Archivo de la etiqueta: ESO

División de polinomio DE GRADO 6 entre POLINOMIO de grado 3.

Ejercicio para practicar la división de polinomios de la manera tradicional.
Divide:
(x^6+31x^2-5x^5-8x+21)/(x^3-2x-7)
Da como resultado la suma de los coeficientes del cociente.
A)-1 B)-5 C)-6 D)2 E)7

Para dividir polinomios debemos hacer iteraciones de 3 pasos. Es decir debemos dar 3 pasos, y luego repetir y repetir hasta que el grado del dividendo sea menor que el del divisor.

Lo primero que debemos hacer es colocar los polinomios ordenados y completos, con los huecos que correspondan si falta algún monomio de algún grado.

Si hay algo que no entiendas en el vídeo, pregúntame en los comentarios.

¿No te gusta? Haz un comentario contándome lo que falla.

Suscríbete a este blog: así te llegará un email cuando publiquemos nuevos recursos didácticos:

¡SI ME QUERÉIS, SUSCRIBIRSE!

Medidas de dispersión: rango, varianza y desviación típica de una distribución de frecuencias

La distribución de frecuencias del número de aciertos en un examen de 100 preguntas es:
Aciertos | fi
[20 , 40) | 8
[40 , 60) | 6
[60 , 80) | 9
[80,100) | 7
Calcula las siguientes medidas de dispersión: rango, varianza y desviación típica (o desviación estándar).

El gato ya se ha suscrito a mi canal ¿Y tú qué? ¡Si me queréis, suscribirse!

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

¿Buscas algo más?:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Medidas de centralización: media aritmética, moda y mediana de una distribución de frecuencias

Esta es la distribución de frecuencias de la temperatura de varias ciudades:

[ 0 , 5 ) | 2
[5 , 10) | 5
[10,15) | 6
[15,20) | 8
[20,25) | 12
[25,30) | 15
[30,35) | 2

Calcula la media aritmética, la moda y la mediana.

¡Suscríbete a mi canal MatalasMates por las buenas o usaré chantaje emocional

 

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Medidas de centralización: media, moda y mediana. Estadística.

Los siguientes datos son las edades de los 11 jugadores titulares de un equipo de fútbol:

19,20,19,22,23,24,25,26,28,19,28

Calcula la media, la moda y la mediana.

En este caso no vamos a utilizar una tabla, pues son pocos datos.

Espero que se haya entendido. Si no es así, puedes usar los comentarios para preguntar.

¡Suscríbete a mi canal MatalasMates y el mundo será maravilloso (a lo mejor)!  

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

 

Cómo organizar datos en una tabla de frecuencias con intervalos. Estadística

Los resultados de un examen de 100 preguntas a una clase de 30 alumnos han sido:

20,25,28,49,60,92,75,49,67,80,42,79,70,82,96
54,36,25,96,58,66,77,42,88,99,33,37,66,68,79

Construye la tabla de frecuencias, agrupando los datos por intervalos. Haz el histograma.

Es conveniente primero haber visto el anterior vídeo: Cómo organizar datos en una tabla de frecuencias.

En este caso no tendría ningún sentido colocar en una tabla cada dato individualmente, ya que apenas se repiten los datos. Nos saldría una tabla casi con tantas filas como datos. Es necesario agrupar los datos en intervalos (clases). Todos los intervalos deben tener el mismo ancho, y debemos añadir el valor que les representa, que será el valor medio del intervalo, al que llamamos marca de clase (xi).

¡Si me queréis, suscribirse! ¡Haz clic aquí!

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Cómo organizar datos en una tabla de frecuencias. Estadística.

En un examen las notas han sido:
{6,4,6,7,5,2,7,6,5,2,6,1,5,8,7,6,4,9,5,5,1,6,9,8,4}

  • Organiza estos datos en una tabla de frecuencias con xi, fi (frecuencia absoluta), hi (frecuencia relativa) y el porcentaje.
  • Representa el diagrama de barras.

¡Si me queréis, suscribirse! «Hacerme el favor».

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Cómo representar la gráfica de una función cuadrática (parábola). Ejemplo 2.

Si no lo has visto aún, es recomendable que primero veas el ejemplo 1: https://www.matalasmates.es/como-representar-la-grafica-de-una-funcion-cuadratica-parabola/

Representa gráficamente esta función cuadrática:
y = x² + 2x – 3

¡Si me queréis suscribirse en MatalasMates! Es gratis y no hace mal a nadie.

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Igualdades notables (o identidades notables). Explicación y ejemplos.

Las igualdades notables (o identidades notables, o también productos notables) más conocidas son:

Cuadrado de una suma: (a+b)² = a² + b² + 2ab

Cuadrado de una diferencia: (a-b)² = a² + b² – 2ab

Suma por diferencia: (a+b)(a-b) = a² – b²

¡Si me queréis, suscribirse! ¡Solo haz clic aquí!

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece agradecerme aún más el vídeo, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Ecuaciones de segundo grado o cuadráticas. Ejemplo 3

Cómo resolver una ecuación de segundo grado. Ejemplo 3.
4x + 1 = -4x²
En este caso el discriminante (b² – 4ac)= 0, por lo que la ecuación solo tiene una solución.

¡Suscríbete a nuestro canal youtube MatalasMates! 

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece agradecerme aún más el vídeo, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Ecuaciones de segundo grado o cuadráticas. Ejemplo 2.

Cómo resolver una ecuación de segundo grado.

Resuelve:  x² + 3x + 3 = 0

En este caso, no tiene solución en el conjunto de los números reales, ya que el discriminante (b² – 4ac) es negativo.

Actividad de ampliación: más allá de los números reales sí que tiene soluciones. ¿Quién es capaz de escribir qué soluciones tiene la ecuación y a qué conjunto de números pertenecen? Espero sus comentarios.

¡Suscríbete a nuestro canal youtube MatalasMates! Sin miedo, que no tiene gluten. 

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece agradecerme aún más el vídeo, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

Ecuaciones de segundo grado. Explicación. Ejemplo 1.

Cómo resolver una ecuación de segundo grado completa:

Las ecuaciones de segundo grado, o ecuaciones cuadráticas, tienen esta forma general:

ax² + bx + c = 0 donde a no puede valer 0, ya que si fuera así, no sería de segundo grado. Pero b  c sí que pueden ser 0, con lo que sería una ecuación de segundo grado incompleta.

Como vemos en las ecuaciones de segundo grado completas hay tres términos: de grado 2, de grado 1 y de grado 0 o término independiente.. Cada término tiene su coeficiente (a, b, c), y para resolver la ecuación debemos usar esta fórmula:

La ecuación tendrá :

  • Dos soluciones si b²-4ac > 0
  • Una solución si b²-4ac = 0
  • Ninguna solución real si b²-4ac < 0

Resuelve:
x² – 9x + 18 = 0

Si te ha sido útil puedes darme las gracias suscribiéndote a nuestro canal youtube MatalasMates.

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece agradecerme aún más el vídeo, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates

La edad de Diofanto. Problema con ecuaciones de primer grado.

Según dicen en la tumba de Diofanto figura el siguiente epitafio:
En esta tumba reposa Diofanto. ¡Ah, qué gran maravilla! La tumba cuenta la medida de su vida. Dios le concedió ser un muchacho la sexta parte de su vida, y añadiendo una doceava parte a ésta, revistió su mejilla de pelusa. Encendió la luz del connubio pasada una séptima parte, y cinco años después de su matrimonio le dio un hijo. ¡Ay! ¡Desdichado hijo tardío! El frío destino se lo llevó cuando alcanzó la edad de la mitad de la vida total de su padre. Después de consolar su aflicción mediante el estudio de los números durante cuatro años, Diofanto terminó su vida.

Lo primero es conocer el problema, lo que se expone y lo que se pide. Y ponerle nombre a las magnitudes. En este caso llamamos x a la edad a la que murió Diofanto, y a partir de ahí, empezamos a sumar fracciones de su vida… ¿Todas las partes de su vida sumadas a qué será igual? Pues al total de su vida (x). Lógico, ¿no?

¿Te gusta? Suscríbete al canal youtube MatalasMates. Hazme el favor, que a veces tengo la impresión de estar explicando al techo.

También puedes suscribirte a este blog, y te llegará un email cuando se publiquen más recursos educativos TIC como este:

Y si te apetece agradecerme aún más el vídeo, compártelo con los botones que están un poco más abajo. ¡Gracias por colaborar!

MatalasMates